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A Floquet linear stability analysis has been performed on a viscoelastic cylinder wake. The FENE-P model
is used to represent the non-Newtonian fluid, and the analysis is done using a modified version of an
existing nonlinear code to compute the linearized initial value problem governing the growth of small
perturbations in the wake. By measuring instability growth rates over a wide range of disturbance span-
wise wavenumbers ˛, the effects of viscoelasticity were identified and compared directly to Newtonian
results.
iscoelastic simulation
loquet stability analysis

At a Reynolds number of 300, two unstable bands exist over the range 0 ≤ ˛ ≤ 10 for Newtonian flow.
For the low ˛ band, associated with the “mode A” wake instability, a monotonic reduction in growth
rates is found for increasing polymer extensibility L. For the high ˛ band, associated with the “mode B”
instability, first a rise, then a significant decrease to a stable state is found for the instability growth rates
as L is increased from L = 10 to L = 30. The mechanism behind this stabilization of both mode A and mode
B instabilities is due to the change of the base flow, rather than a direct effect of viscoelasticity on the

perturbation.

. Introduction

In our previous work we numerically investigated the effect of
iscoelasticity on the flow over a circular cylinder by performing
ull nonlinear simulations [1]. For this canonical bluff body flow,

any interesting modifications to the flow were found, particu-
arly at Reynolds numbers lying in the regime of three-dimensional
ransition. It is well documented (see [2–4]) that the Newtonian
ransition from a two-dimensional, periodic wake to one that is
hree-dimensional goes through two secondary instability stages:
he “mode A” instability at Re ≈ 190 and the “mode B” instability
t Re ≈ 260. This mode A instability manifests itself as a spanwise
ow of alternating streamwise vortices in the near-wake, with a
haracteristic wavelength of roughly 4D (where D is the cylinder
iameter) and a spatio-temporal symmetry where the streamwise
orticity changes sign on either side of a primary vortex. This has
een found to exist as a subcritical instability (see [5]), explaining
he hysteresis that is observed in experimental measurements of
he critical Reynolds number where this transition takes place. The

ode B instability appears also as alternating streamwise vortices

n the near-wake, however with a smaller wavelength of about 1D
nd a symmetry which maintains the same sign of vorticity through
primary vortex. It also differs from the mode A instability in that

t has been identified as a supercritical instability [5].
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In the three-dimensional simulations of [1], the Reynolds num-
ber was set to be 300, well within the range where mode B
instabilities would dominate the Newtonian wake. It is significant,
therefore, that at high polymer extensibility L (in the FENE-P model)
the wake is completely two-dimensional, without traces of stream-
wise vorticity. At intermediate values of L, streamwise vorticity
remained, but in a state that was not easily identified as either mode
A or mode B. The characteristic wavelength of vortical structures in
this state appeared to be near that of the mode A instability, how-
ever they did not appear in the same spanwise-alternating form
unique to the mode A instability.

These nonlinear results, along with the experimental work done
by [6] illustrating similar stabilization behavior, are the moti-
vation for the present linear stability analysis, whose goal is to
better quantify the stabilizing effect that viscoelasticity has on
the cylinder wake. For this purpose, a Floquet stability analysis is
performed – a technique which has seen much success identify-
ing the secondary instabilities that form from a two-dimensional,
vortex shedding Newtonian wake. Noack and Eckelmann [7] were
among the first to use Floquet analysis on the Newtonian cylinder
wake, followed by Barkley and Henderson [4] a short time later.
Barkley and Henderson [4] performed a detailed study over the
entire range of 170 ≤ Re ≤ 300 in order to pinpoint exactly the crit-

ical Reynolds numbers where the onset of the secondary mode
A and mode B instabilities occurred. Their computed values of
these critical Reynolds numbers matched very well quantitatively
with the experiments of [3] and this success has prompted use
of Floquet analysis for many other types of time-periodic wake

dx.doi.org/10.1016/j.jnnfm.2011.02.005
http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:esgs@stanford.edu
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ows such as square cylinders (see [8]) and confined cylinders (see
9]).

By utilizing the method presented by Robichaux et al. [8],
rowth rates for perturbations of the two-dimensional base flow in
iscoelastic flow past a cylinder at various values of polymer exten-
ibility L are computed and presented. Indeed elasticity reduces
hese growth rates in most cases, and the stabilization mechanisms
re presented and discussed.

. Problem formulation

.1. Governing equations

As was done in [1], the FENE-P constitutive model is used to
epresent the presence of a dilute, homogeneous concentration of
olymers within the flow. Thus the governing mass and momentum
quations for the flow are given below in dimensionless form.

∂uj

∂xj
= 0 (1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ ˇ

Re

∂2ui

∂xj∂xj
+ 1 − ˇ

Re

1
Wi

∂�p
ij

∂xj
(2)

Here, we have introduced a Reynolds number,
e = �DU∞/(�s + �p), as a ratio of inertial to viscous forces; a
eissenberg number, Wi = �U∞/D, as a ratio of the polymer relax-

tion time scale to the flow convective time scale; and a viscosity
atio, ˇ = �s/(�s + �p), as the fraction of the total viscosity due
o the solvent. Within these definitions, D refers to the cylinder
iameter, U∞ refers to the uniform upstream flow velocity, �
efers to the polymer relaxation time, �s refers to the solvent
ontribution to the total viscosity, and �p refers to the polymer
ontribution to the total viscosity.

In Eq. (2), the term involving �p
ij

describes the force due to the
dditional polymeric stresses, and these are a function of the poly-
er conformation tensor cij and the polymer extensibility L:

p
ij

= cij

1 − (ckk/L2)
− ıij (3)

inally, according to the FENE-P model, cij obeys the evolution equa-
ion

∂cij

∂t
+ uk

∂cij

∂xk
− cik

∂uj

∂xk
− ckj

∂ui

∂xk
= − 1

Wi
�p

ij
(4)

With this closed system of equations for velocity, pressure,
olymer conformation, and polymer stress, the set of linearized
quations required to perform the linear stability analysis can be
btained.

.2. Linearized equations

By approximating the flow and polymer stress fields as a base
ow plus a perturbation, it is possible to linearize equations (1)–(4).
apitalized characters will refer to base flow quantities, and primed
haracters will refer to fluctuations about the base state:

i = Ui + u′
i (5)

= P + p′ (6)

p
ij

= Tij + � ′
ij (7)
ij = Cij + c′
ij (8)

Substituting these definitions into Eqs. (1)–(4) and neglecting
erms which are quadratic or higher in primed quantities yields a
et of linearized FENE-P equations for the fluctuating quantities.
uid Mech. 166 (2011) 554–565 555

Mass conservation:

∂u′
j

∂xj
= 0 (9)

Momentum conservation:

∂u′
i

∂t
+ Uj

∂u′
i

∂xj
+ u′

j

∂Ui

∂xj
= −∂p′

∂xi
+ 1

Re

∂2u′
i

∂xj∂xj
+ 1 − ˇ

Re

1
Wi

∂� ′
ij

∂xj
(10)

Linearized conformation tensor evolution equation:

∂c′
ij

∂t
+ Uk

∂c′
ij

∂xk
+ u′

k

∂Cij

∂xk
− Cik

∂u′
j

∂xk
− c′

ik

∂Uj

∂xk
− Ckj

∂u′
i

∂xk
− c′

kj

∂Ui

∂xk

= − 1
Wi

� ′
ij (11)

Where the linearized polymer stress � ′
ij

is given by:

� ′
ij = L2Cijc

′
kk(

Ckk − L2
)2

+
c′

ij

1 − (Ckk/L2)
(12)

Because we are interested in the onset and growth of three-
dimensional instabilities in the cylinder wake, a Fourier transform
in the z (spanwise) direction is performed. By introducing a
perturbation spanwise wavenumber ˛, we can approximate the
perturbation field as a sum of Fourier modes in the spanwise direc-
tion:

u′
i =

∫ ∞

−∞
ûie

−i˛z d˛ (13)

p′ =
∫ ∞

−∞
p̂e−i˛z d˛ (14)

c′
ij =

∫ ∞

−∞
ĉije

−i˛z d˛ (15)

Since the equations governing the perturbations are linear, one
can easily derive expressions for individual modes of ûi, p̂, and ĉij
at a specified value of ˛ from Eqs. (9)– (11), thus reducing the
full three-dimensional problem to a coupled set of time depen-
dent, purely two-dimensional (in x and y) equations with ˛ as a
parameter. The equations for the Fourier-transformed quantities,
not shown here, are identical to Eqs. (9)–(11), with the exception
that derivatives in the z-direction are replaced with ∂/∂z = − i˛.

It should be noted that when performing a normal mode
approximation such as that described above, the resulting Fourier
coefficients can, in general, have both real and imaginary parts. For
the current problem, however, this is not the case. Since we are
only concerned with spanwise perturbations, and given the nature
of the governing linearized equations (9)–(11), we find that the
coefficients are always either purely real or purely imaginary. In
particular, the phase of the spanwise velocity fluctuation w′, as well
as that of the components c′

13 and c′
23, is exactly out of phase with

the remaining quantities. As a result, the coefficients ŵ, ĉ13, and
ĉ23 are purely imaginary assuming all other quantities are purely
real. By making the simple substitution w̃ = iŵ (and similarly for
c̃13, and c̃23), we guarantee that all coefficient values will be purely
real-valued. Note, however, that for notational simplicity all coeffi-
cients will be referred to as “hat” quantities, despite actually solving
for w̃, c̃13, and c̃23.

3. Numerical method
3.1. Base flow computations

Solving the full set of governing Eqs. (1)–(4) on a three-
dimensional domain was the object of our previous work (see [1]),



5 ian Fl

a
b
a
m
o

d
c
b
e
e
o
C
w
s
a
t
f
m
s
c

3

d
e
s

t
t
e
t
d
s
e∫

I
v
A
p
f
t
l
b
e
g

w

B
i
i
s
t
a
n
t
s

w
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nd therefore the numerical details of the nonlinear solver will not
e repeated here. It should suffice to say that the code is based on
n unstructured finite-volume method, utilizing a fractional step
ethod for handling the incompressibility constraint and a second

rder Crank–Nicholson scheme for time advancement.
In order to perform a Floquet stability analysis, a two-

imensional, time-periodic base flow past a cylinder must be
omputed for each chosen combination of Re, Wi, L, and ˇ. These
ase flow simulations were done using the full nonlinear code,
xcept that they were restricted to two-dimensional domains by
nsuring all z-derivatives are exactly zero. Following the procedure
f [4] and [8], these periodic base flow solutions providing Ui and
ij were stored at 64 intervals over a single shedding period. They
ere then Fourier transformed in time, allowing for the Fourier

eries reconstruction of the solution at any simulation time and at
ny point on the computational mesh. It should be noted that in
he previous studies of [4] and [8], 32 coefficients were adequate
or accuracy in reconstructing Ui, but since in the present study Cij

ust also be stored, and since the polymer conformation exhibits
harper features due to the low (artificial) diffusivity, 64 Fourier
oefficients were required to maintain acceptable accuracy.

.2. Modifications to nonlinear code

Aside from obtaining a base flow field, modifying the three-
imensional, fully nonlinear code was required to solve for the
quations governing ûi, ĉij, and p̂. This was done in a series of
traightforward steps.

First, the code was altered such that it solves a linear set of
ransport equations (velocity and scalar transport equations) rather
han a nonlinear set. For the momentum equation, the nonlin-
ar convection term was originally discretized by first employing
he divergence theorem over each grid volume, then storing a
ivergence-free advection velocity (obtained after solving the pres-
ure Poisson equation during the previous time step) at the face of
ach finite-volume cell:

�

uj
∂ui

∂xj
dV ≈

∑
f

uiUf Af (16)

n Eq. (16), the index f refers to each face of a particular finite
olume �, Uf refers to the advective face-normal velocity, and
f refers to the face area. The advected velocity ui is then com-
uted at the face center using linear interpolation. In the present
ormulation, the advective face-normal velocity Uf was merely set
o zero, Uf = 0, entirely eliminating the contribution from the non-
inear term. To then account for linear advection of and from the
ase flow (uj(∂Ui/∂xj) and Uj(∂ui/∂xj)), these terms were treated
xplicitly in time using Green–Gauss reconstruction of the spatial
radients:

∂�

∂xi
≈ 1

V

∫
∂�

�ni dA ≈ 1
V

∑
f

�niAf (17)

here ni is the face-normal unit vector and V is the cell volume.
For the ĉij evolution equations, a different procedure was used.

ecause ĉij is advected by Ui and not ûi, the face-normal veloc-
ty Uf was set to be that of the base flow: Uf = Uini (where ni
s the volume face normal). This procedure thus maintained the
emi-implicit QUICK (quadratic upwind interpolation for convec-
ive kinematics) discretization used in the original code for scalar
dvection (as opposed to setting Uf = 0 again), only with advection

ow being done by the reconstructed base flow. The remaining
erm, uk(∂Cij/∂xk), was then treated explicitly in time using expres-
ion (17).

Second, since the spanwise variation of the quantities of interest
ere parametrized by the wavenumber ˛, a minor modification
uid Mech. 166 (2011) 554–565

of the pressure solver was required. The pressure solver used in
the code is part of a fractional step method: first the momentum
equation is solved using the pressure field from the previous time
step, a Poisson system is solved for a pressure correction using the
discrete continuity equation, and then the velocity is corrected to
become discretely divergence-free.

As mentioned in the previous section, Eqs. (9)–(11) are identical
to those governing ûi, ĉij, and p̂, with the exception of z-derivatives
being replaced with ∂/∂z = − i˛, rendering the equations purely
two-dimensional. Since the code is inherently three-dimensional,
it solves for pressure via a full continuity equation, but computing
the derivative ∂ŵ/∂z exactly equal to zero for the two-dimensional
simulations:

∂û

∂x
+

∂v̂

∂y
+

0
∂ŵ

∂z
0=

(18)

With the parameterization described above, however, the two-
dimensional continuity equation is:

∂û

∂x
+ ∂v̂

∂y
= i˛w = ˛w̃ (19)

Therefore, a “mass source” equal to ˛w̃ was added into the
Poisson system governing the pressure correction, accounting for
spanwise variation which cannot be explicitly calculated (since all
z-derivatives compute to exactly 0). This ensures a solution for ûi
which discretely satisfies Eq. (19) at each time step.

3.3. Floquet analysis

Since the base flow solution for Ui, Cij, and P are all periodic in
time, Eqs. (9)–(11) are of Floquet type. After these equations are
discretized, one can write the problem as an ordinary differential
equation in the following way

dq
dt

= L(t)q (20)

where q is the solution vector containing ûi, p̂, and ĉij at each of the
grid points, and L(t) is a time-periodic, linear operator (with period
T):

L(t) = L(t + T) (21)

The general solution to a linear ODE of this form is:

q = A(t)q0 (22)

where A is the n × n fundamental matrix containing n linearly inde-
pendent solutions to (20), and q0 is the initial condition q(t = 0).
Note that for a steady base flow, A would consequently be steady,
and a linear stability analysis would be concerned with the eigen-
values of the operator A. For the present case, however, the Floquet
theorem (see [10]) states that the T-periodic operator A(t) can be
split into its periodic and exponentially varying parts:

A(t) = P(t) exp (Bt) (23)

where P(t) is T-periodic and B is a constant matrix. Furthermore,
since the fundamental solution operator A(t) is periodic, integrating
over a single period T would yield:

A(t + T) = A(t)C (24)
Here it is obvious that C contains the non-periodic evolution
over a single period. From Eq. (23), we see that C = exp (BT).

Thus, the eigenvalues �n of C are known as the Floquet multipli-
ers of the problem, governing the exponential rise or decay of the
solution over each period. We note that the eigenvalues 	n of B are
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Before performing the Floquet stability analysis for the vis-
coelastic case, Newtonian growth rate calculations were done to
compare to the existing work of [4]. Fig. 2 shows the absolute
value of the largest magnitude Floquet multiplier, |� |, versus the
Fig. 1. Schematic of xy domain used for both base flow and Floquet calculations.

nown as the Floquet exponents and are analogous to the eigenval-
es of a typical steady (non-Floquet) linear stability problem. They
re related to the Floquet multipliers by:

n = exp (	nT) (25)

In the Floquet stability analysis done by [4], the operator C was
onstructed and its largest eigenvalues were solved directly using a
rylov subspace method. In the present study, however, we take an
pproach identical to that of [8], who numerically solve the initial
alue problem of Eqs. (9)–(11) over a specified amount of time, and
stimate the largest eigenvalue by measuring the growth or decay
f fluctuation energy in the system. As done in [8], we define a
erturbation energy integrated over the entire domain as:

(t) =
∫ √

û2 + v̂2 + ŵ2dV (26)

Then, the absolute value of the maximum eigenvalue can be
pproximated as:

�max| ≈ E(t + T)
E(t)

(27)

This is equivalent to utilizing a power method to compute the
argest magnitude eigenvalues of C, and therefore only provides
nformation about the eigenvalue with the largest magnitude.

.4. Boundary conditions

For the Floquet analysis, all simulations were performed on
wo-dimensional domains. Since the underlying code used is
hree-dimensional, meshes with only one cell in the spanwise (z)
irection were used. Combining this type of mesh with periodic
oundary conditions in the z-direction ensures that all ∂/∂z = 0, thus
esulting in purely two-dimensional calculations.

The xy domain and mesh used for both the base flow calcula-
ions and the Floquet analysis is identical to one used our previous
ork (see Figure 2 of [1]), and it is shown schematically in Fig. 1.

here are only two outer boundaries on the domain: an inlet on the
eft, and one (vertical) outlet on the right. For the base flow calcula-
ions, boundary conditions were set to be exactly the same as done

reviously in [1], namely, a uniform velocity U∞ = [1, 0, 0] and equi-

ibrium base flow polymer conformation Cij,∞ = ıij along the entire
nlet boundary (note Cij,∞ = ıij only in the limit of L → ∞, but in all
ases here, this deviation from the true equilibrium conformation
s negligible), and convective outlet conditions for both Ui and Cij.
uid Mech. 166 (2011) 554–565 557

At the cylinder wall, no-slip conditions are used for Ui and no-flux
conditions are used for Cij (∂Cij/∂n = 0).

For the Floquet calculations, similar conditions are used for ûi
and ĉij. Both are set to zero along the entire inlet since there should
be no perturbations upstream of the cylinder, and both also use
convective outlet conditions. At the cylinder surface, no-slip con-
ditions are applied to ûi and no-flux conditions are applied to ĉij.
Unlike the base flow computations, however, care must be taken in
selecting initial conditions for the Floquet analysis. Since ûi and ĉij
represent a spanwise perturbation amplitude, they are set equal to
1% of the base flow values everywhere in the domain:

ûi(t = 0) = 0.01Ui(t = 0) (28)

ĉij(t = 0) = 0.01Cij(t = 0) (29)

It is this initial disturbance whose energy will be tracked and
used to compute maximum instability growth rates.

One final note must be made about the pressure disturbance
p̂. In typical incompressible simulations, the reference value (and
thus the absolute value) of the pressure p is unimportant since it
only appears inside a gradient in the momentum equations. For the
equations governing ûi, ĉij, and p̂ (Eqs. (9)–(11)), however, this is
not the case. Since all gradients in the z direction are set to −i˛,
pressure appears explicitly in the ŵ momentum equation:

∂ŵ

∂t
+ ûj

∂ŵ

∂xj
= i˛p̂ + ˇ

Re

∂2ŵ

∂xj∂xj
+ 1 − ˇ

Re

1
Wi

∂�̂p
3j

∂xj
(30)

Therefore its value becomes important and p̂ requires a Dirichlet
boundary condition to set the reference pressure. As with ûi and
ĉij, there should be no perturbations in any of the flow quantities
upstream, so p̂ was set to zero at the single node lying where the
front stagnation point streamline meets the domain inlet:

p̂(x = −23D, y = 0) = 0 (31)

4. Results

4.1. Comparison of Newtonian calculations
Fig. 2. Computed values of the largest magnitude Floquet multiplier |� | versus
spanwise wavenumber ˛ for purely Newtonian flow at different Reynolds num-
bers. These are compared to the results of [4] (thick dashed lines). Hollow symbols
indicate complex-valued Floquet multipliers.
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˛ = 7.6), the grid independence of each viscoelastic case was estab-
lished. Over all values of L, the largest change in growth rate due to
grid refinement was 6.5%. As mentioned above, this is certainly ade-
quate for the purposes of determining the degree of stabilization
due to viscoelasticity.
58 D. Richter et al. / J. Non-Newton

panwise wavenumber of the disturbance, ˛, at several different
eynolds numbers. The values obtained by [4] have been digitized
nd plotted on top of the current results as thick dashed curves. The
uthors of [4] found two unstable bands of spanwise wavenum-
er as the Reynolds number is increased. The first band occurs at
e = 188.5, and has a peak growth rate at a spanwise wavenumber
f ˛ ≈ 1.6. This is in very close quantitative agreement with experi-
ental measurements of the wavelength of the mode A instability

hat forms at nearly the same Reynolds number (see [3]). As the
eynolds number is increased, Barkley and Henderson [4] then
nd a second band of unstable wavenumbers which develops at
e = 259. This band is centered about a spanwise wavenumber of
≈ 7.6, which again shows good agreement with experimental
easurements of the mode B instability wavelength.
Using our present technique, we find agreement within 5% for

he growth rates at ˛ encompassing the first unstable band. For
he wavenumber band at higher ˛, however, differences of up to
6% are found in the growth rate. The cause of this discrepancy
as investigated, and it was found to be a result of a difference in
omain size between the current study and that used in [4], and
ot due to time step or grid resolution. When reducing the size of
he current domain to match that of the eigenvalue calculations of
4] (note they use different domain sizes for base flow calculations
nd eigenvalue calculations), errors are reduced to within 5%. Fur-
hermore, an additional calculation was performed on the square
ylinder of [8], whose method for computing eigenvalues we have
dopted, and obtained Floquet multiplier values which are nearly
dentical. Ultimately, we are not concerned with the values of the
rowth rates themselves, but only whether or not the flow has been
tabilized or destabilized by the presence of viscoelasticity.

Before moving onto viscoelastic calculations, one more note
ust be made. Because we are measuring the instability growth

ate using expression (27) and not actually computing the eigen-
alues of the operator C, only the absolute value of the largest
igenvalue can be found – no information about the complex angle
s available. It is this fact that caused [8] to mistakenly identify

hat they measured as a third unstable, subharmonic mode in the
ake of a square cylinder. As shown in detail by [11], measure-
ents of the growth rate by Eq. (27) implicitly assumes the largest
agnitude multiplier � is purely real, while the actual Floquet mul-

iplier (calculated directly from the eigenvalues) exists as a pair of
omplex-conjugate values in this third unstable band. The result is
hat [11] calls a quasiperiodic mode instead of the unstable sub-
armonic mode found by [8], which manifests itself as a standing
r traveling wave. This mode introduces a new frequency into the
ystem due to the complex part of the eigenvalue, and as a result,
lots of |� | computed with (27) versus time exhibit oscillations
bout the actual value of |� | computed directly from its eigenval-
es. This is illustrated in Fig. 3, which shows plots of |� | versus
ime for Re = 300 and two values of ˛. For ˛ = 1.6, |� | clearly lev-
ls to a constant value of | � |≈1.87. For ˛ = 4.0, however, the signal
learly has additional frequency input likely due to the presence of a
omplex-conjugate pair of eigenvalues, and eventually approaches
state which oscillates (and does not decay further) around the

alue | � |≈0.5. From [4] we see that ˛ = 4.0 does in fact lie within a
egion of complex-conjugate pair multipliers, indicated by hollow
ircles in their Figure 7 (not reproduced here in the digitized data
ncluded in Fig. 2).

Therefore, by observing whether or not the signal of |� | versus
ime has an oscillatory component which remains indefinitely,
t is possible to at least qualitatively predict whether or not the
ultiplier with the largest magnitude is purely real. Using this
bservation for at least 20 shedding periods, plots of growth rates
ncluded in this paper will use hollow symbols to indicate what
s likely a complex eigenvalue. While using this method it is still
mpossible to determine the actual values of the real and complex
Fig. 3. Plot of growth rate |� | versus time for two different spanwise wavenumbers:
˛ = 1.6 and ˛ = 4.0. ˛ = 1.6 lies in a range with the largest eigenvalue being purely real,
while ˛ = 4.0 lies in a range where largest magnitude eigenvalue is a pair of complex-
conjugate values, resulting in an oscillatory signal. Both plots are for Re = 300.

parts of each multiplier, the present approach serves the purpose
of determining stability characteristics of viscoelastic flow around
a cylinder.

4.2. Viscoelastic results

After confirming the predictive capability of our method on the
stability of two-dimensional, periodic wakes for Newtonian flow,
the same analysis was done for the viscoelastic case. Plots of the
computed growth rates versus spanwise wavenumber ˛ are shown
for various values of the polymer extensibility L in Fig. 4 at Re = 300,
Wi = 10, and ˇ = 0.9.

As with the Newtonian case, a grid refinement test was done
to ensure that the growth rates obtained are grid independent for
the viscoelastic results. By repeating the same calculations for a
refined mesh at a single value of ˛ in each unstable band (˛ = 1.6 and
Fig. 4. Computed values of maximum instability growth rate |� | versus spanwise
wavenumber ˛ for viscoelastic flow at Re = 300 and increasing values of the polymer
extensibility L. All simulations performed with Wi = 10 and ˇ = 0.9. Hollow symbols
indicate complex-valued multipliers.
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Focusing for the moment only on the low wavenumber unstable
and (0 ≤ ˛ ≤ 3), increases in the polymer extensibility clearly result

n a monotonic decrease in the maximum growth rate. From New-
onian flow to viscoelastic flow with L = 30, the peak growth rate
n the mode A unstable band decreases by 37%. Furthermore, the
ange of unstable ˛ is widened, as well as shifted slightly towards
arger ˛.

For the higher band of unstable ˛ (5 ≤ ˛ ≤ 10), there is instead a
on-monotonic reduction in the instability growth rates. For L = 10,
here is actually a substantial increase in the growth rate of pertur-
ations (43% increase in the peak value), along with a widening of
he wavenumber range over which instability growth occurs. As L is
ncreased beyond this value, however, there is a near total suppres-
ion of instability growth. In fact, one could argue that for L = 20 and
= 30, the existence of a mode B “band” is eliminated completely
especially for L = 30). Thus, as L is increased beyond L = 10 a single
rowth rate curve emerges, whose only unstable region exists near
avelengths associated with the mode A instability, and whose

rowth rates smoothly decrease as the wavenumber ˛ is increased.

.3. Comparison to nonlinear results

In [1] it was shown using nonlinear, three-dimensional simula-
ions that increasing L in cylinder flow at Re = 300 could eventually
esult in a total elimination of three-dimensionality in the wake. For
he Newtonian case, a clear mode B structure of alternating stream-
ise vortices immediately behind the cylinder was found. When

iscoelasticity was introduced at a polymer extensibility of L = 10,
treamwise vorticity remained present in the wake, but in a weak-
ned and altered state. Instantaneous snapshots of the streamwise
orticity (ωx ± 0.5) for these simulations, plus that for L = 20 are
hown in Fig. 5 (same as in Figure 12 of [1] but from a different
ngle). The orientation of the figure is looking directly downstream
hrough the cylinder, such that the spanwise vortical structures
resent in the wake are clearly visible. From the stability results
resented above, one would initially expect to see a wake domi-
ated by mode B structures at L = 10, much like Newtonian flow at
he same Reynolds number, since the growth rates in this range
f ˛ have increased dramatically from their Newtonian counter-
art. Categorizing the state found from nonlinear simulations at
= 10 as either exhibiting mode A or mode B instabilities, how-
ver, is not straightforward. It was suggested in [1] that the wake
as possibly being reverted back to a state resembling the mode A

nstability based solely on the wavelength of the dominant struc-
ures behind the cylinder (this wavelength of �z ≈ 3.5 can clearly
e seen in Fig. 5(b)). However, the present results indicate that the
tate of the wake at L = 10 is the culmination of nonlinear processes
ather than a direct realization of an eigenmode of the linear stabil-
ty analysis. In Fig. 5(b), there is evidence in the region immediately
ehind the cylinder of streamwise vorticity growth which may have
characteristic wavelength in the high-˛ unstable region of Fig. 4,
ut the overall structure is clearly not just a representation of the
ritical Floquet mode.

For L = 20, the case is slightly different. From Fig. 4, we see that
here is again exponential growth of perturbations lying in one of
wo unstable regions, still somewhat analogous to the mode A and

ode B bands of the Newtonian case: 1.0 � ˛ � 3.4 or 5.2 � ˛ � 7.2.
owever, the growth of the high-˛ modes is significantly smaller

han those from the low-˛ band, so based on linear theory alone,
ne would now expect to observe a state devoid of mode B struc-
ures (i.e. one resembling the mode A wake), despite still being at a

eynolds number of 300. As opposed to the L = 10 case, this would
ow seem to reinforce the suggestion from [1] that viscoelasticity

s merely delaying the Newtonian modes of transition. By examin-
ng the nonlinear solution at the same value of L (seen in Fig. 5(c)),
he wake does in fact take a form resembling that of the mode A
uid Mech. 166 (2011) 554–565 559

instability. However, the wavelength that appears in the nonlinear
simulation (roughly �z ≈ 1.6D) is higher than that predicted by the
Floquet analysis, again suggesting nonlinear growth of spanwise
perturbations beyond the linear regime.

One important issue mentioned in [4] that should be noted here
is the applicability of linear stability analysis to the appearance of
the mode B instability. The base state chosen for the linear stability
analysis was the two-dimensional, vortex shedding wake, there-
fore the growth rates found are for perturbations growing from
this state. It is well-known experimentally (see [3,12]) that the
mode A instability precedes the mode B instability, and thus the
mode B instability is growing from a state already exhibiting the
mode A instability – not the two-dimensional base state. Despite
this, Barkley and Henderson [4] found relatively good qualitative
and quantitative agreement to experiments of the mode B criti-
cal Reynolds number, as well as the wavelength and symmetry of
the resulting modes. When considering this for the present results,
the effect may be amplified due to the additional nonlinearity of
the viscoelastic contribution – a fact illustrated by the differences
between the linear and nonlinear calculations at L = 10.

5. Mechanism discussion

5.1. Mode A stabilization mechanism

As pointed out in the previous section, Fig. 4 shows a mono-
tonic decrease in the perturbation growth rates with increasing
polymer extensibility L over the unstable wavenumber band
associated with the mode A (long wavelength) instability. The
mechanism responsible for this stabilization will be discussed fur-
ther.

For Newtonian flow past a cylinder, it has been argued that
the nonlinear mode A instability is a direct result of an “elliptic”
instability of the vortex core (see [3,13,14]), and its wavelength
therefore scales on the size of the primary spanwise vortices. This
elliptic instability is an amplification of inertial waves in a flow
with elliptical streamlines, and it is physically due to the alignment
and resonance of traveling disturbance waves with the strain field.
The existence of such instabilities has been shown analytically to
exist for unbound elliptical flows (see [15–17]) and furthermore
[18] showed that these instabilities can still exist in nearly the
same form but within bounded domains, such as inside a primary
spanwise vortex. For the cylinder wake at high enough Reynolds
number, the argument given by [13] is that during their develop-
ment, elliptic instabilities begin to form within the primary vortex
cores near the base of the cylinder. These instabilities are then
advected downstream while being amplified in the high strain rate
region between primary vortex cores and eventually give rise to the
mode A instability. Rough estimates of the symmetry and spanwise
wavenumber of these elliptic instabilities compares well with those
of the mode A instability, and patterns of the instability within a
developing vortex appears qualitatively similar to growing modes
of the elliptic instability.

Consistent with this mode A mechanism is a recent study by
[19] which investigates the spatial origins of the mode A and mode
B instabilities by determining the locations in the flow where
a perturbation force-velocity feedback is maximized. This study
corroborates the Floquet analysis done on successively reduced
domains by [20] and shows that the mode A instability is formed
in a relatively small region very close to the back of the cylinder

(within 1.5D of the rear stagnation point). Therefore, not only does
this support the elliptic instability mechanism, but it also provides a
location to begin looking for the stabilizing cause of viscoelasticity.

Fig. 6 shows contours of perturbation energy normalized by
the total integrated energy for increasing values of L at Re = 300,
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ig. 5. Instantaneous snapshots of streamwise vorticity (ωx ± 0.5) in the nonlinear w
t the y–z plane. Results are for (a) Newtonian flow; (b) Wi = 10, L = 10, ˇ = 0.9; (c) W

i = 10 and ˇ = 0.9 (for the viscoelastic cases) and with a spanwise
avenumber of ˛ = 1.6. From the figure it is obvious that the over-

ll amount of perturbation energy has decreased with increasing
. In agreement with the argument described above, perturbation
nergy clearly begins to form within the developing primary vortex
seen on the bottom side of the cylinder in each figure) and is then
mplified in the region between the developing vortex and its pre-
ecessor. For L = 10, there are not many noticeable differences in the
istribution or amplitude of perturbation energy throughout the
ake, however for L = 20, the amplitudes of perturbation energy are

educed dramatically. This is entirely consistent with the decrease
n growth rates shown in Fig. 4, however it does not yet lead to an
xplanation of exactly how viscoelasticity is responsible for such
reduction in perturbation growth. To help answer this question,

erms from the overall budget of perturbation energy were com-
uted and integrated over the entire domain. A new perturbation
nergy is defined (as opposed to that in Eq. (26)):

ˆ = 1
2

ûiû
∗
i (32)

An evolution equation for Ê can then be easily obtained by mul-
iplying the equation for ûi (Eq. (10) with u′ replaced by ûi and
-derivatives replaced by −i˛) by û∗

i and averaging this with ûi
ultiplied by the conjugate of the same equation. This results in

balance of terms for the time rate of change of total perturbation
nergy (these equations also follow ∂/∂z = − i˛):

∂E

∂t
= BCV + CV + PR + NS + VS (33)
r Re = 300. Orientation is looking in the downstream direction, through the cylinder
, L = 20, ˇ = 0.9.

In this budget, the different terms correspond to: BCV is convection
of the energy by the base flow:

BCV = Uj
∂Ê

∂xj
(34)

CV is the production of perturbation energy by interaction with the
base flow:

CV = 1
2

[
ûiû

∗
j

∂Ui

∂xj
+ û∗

i ûj
∂Ui

∂xj

]
(35)

PR is the pressure term:

PR = 1
2

[
û∗

i
∂p̂

∂xi
+ ûi

∂p̂∗

∂xi

]
(36)

NS is the dissipation due to Newtonian viscosity:

NS = 1
2

ˇ

Re

[
û∗

i
∂2ûi

∂x2
j

+ ûi
∂2û∗

i

∂x2
j

]
(37)

And finally VS is the contribution of viscoelasticity to the total per-
turbation energy:

VS = 1
2

(
1 − ˇ

)
Re

1
Wi

[
û∗

i

∂�̂ij

∂xj
+ ûi

∂�̂∗
ij

∂xj

]
(38)

After integrating these values over the entire domain at each

time step, plots of these total quantities versus time were created
in order to observe the relative balance of the terms at each stage
within a shedding period. Fig. 7 presents plots of these quantities for
Newtonian flow, L = 10, and L = 20 (again with Wi = 10 and ˇ = 0.9)
over two periods, normalized by the total instantaneous energy at
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ig. 6. Contours of perturbation energy given by Eq. (32), scaled by the total integra
olid black lines for values of �z = ± 0.5. Results are for (a) Newtonian flow; (b) L = 1
or Wi = 10 and ˇ = 0.9.

ach time. As in Fig. 6, there are not many differences between the
ewtonian and the L = 10 case. In both cases, the base flow convec-

ion (BCV) is nearly zero, and the pressure term (PR) contributes
ery little to the overall energy budget. For L = 10, the viscoelastic
erm (VS) appears as a sink, however a very weak one. The energy
udget therefore results for both of these cases primarily in a bal-
nce between production (CV) and dissipation (NS) with production
lightly greater, leading to the growth of perturbation energy and
he overall instability. Our interest, however, is in the L = 20 case,

here significant reductions in instability growth rates and pertur-

ation energy have already been observed. In Fig. 7(c) we see that
nce again the base flow convection and the pressure term con-
ribute very little to the overall balance of the perturbation energy.

ig. 7. Time signals of each of the components of the energy balance over two base flow
he symbols). Energy components scaled by total energy at current time. (a) Newtonian
iscoelastic calculations are for Wi = 10 and ˇ = 0.9.
nergy at the current time. Lines of constant base flow vorticity are also shown with
(c) L = 20. All three calculations are for Re = 300, and all viscoelastic calculations are

Furthermore, the viscoelastic term again appears as a very weak
sink, leaving the primary balance to lie between the production and
dissipation. The main difference in the L = 20 case, however, is in the
decreased production seen over the entire shedding cycle. While
the magnitude of the dissipation is only slightly decreased from
that of the Newtonian case, the significantly diminished produc-
tion is what is responsible for the reduction in perturbation growth
rate. It therefore appears that rather than acting as a direct sink of
perturbation energy in the balance, viscoelasticity instead reduces

the effectiveness of the perturbations from extracting energy out
of the underlying base flow.

From Fig. 6 an explanation for this indirect stabilization can be
extracted. Focusing only on the structure of the underlying base

shedding periods for spanwise wavenumber of ˛ = 1.6 (see text for explanation of
case; (b) L = 10 case; (c) L = 20 case. All three calculations are for Re = 300, and all
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ig. 8. Plots of Floquet multiplier |� | versus time for the (a) full viscoelastic case; (b
nd L = 30. Calculations for spanwise wavenumber ˛ = 1.6.

ow (given in terms of the spanwise vorticity with solid black
ines), it is clear that increasing viscoelasticity can significantly
lter the primary vortex structure of the base flow, perhaps into
state which is less susceptible to perturbation energy growth

nd thus more stable to three-dimensional disturbances. The differ-
nces between the Newtonian and L = 10 base flows are again very
mall, while for the L = 20 case the wake structure is more elon-
ated and the primary vortex formation is further from the rear of
he cylinder.

To test the hypothesis that it is this base flow modification that
tabilizes the flow, a Newtonian Floquet analysis was performed
hile using the viscoelastic base flows. In this case, viscoelastic-

ty plays no role whatsoever, and any differences in the growth
ates would be a result of the change in base flow. For ˛ = 1.6,
esults of this test (in terms of the Floquet multiplier |� | versus
ime) are compared to the full viscoelastic computations in Fig. 8.
s mentioned before, the full calculations result in a monotonic
ecrease in the Floquet multiplier as L is increased. This is seen
learly in Fig. 8(a). For the Newtonian calculation on the varying
ase flows, however, the story is much different. At L = 10, the mul-
iplier actually levels off to a value 20% higher than the Newtonian
ase. Increasing L beyond this value however leads to a reduction in

� | for L = 20, then to a time signal indicative of a complex multiplier
oscillatory |� | versus time signal) for L = 30, whose magnitude is
urther diminished. Even without the presence of the viscoelas-
ic term in the perturbation energy budget, the instability growth

ig. 9. Contour plots of rotation rate, measured as � =
√

	2 − �2 where 	 is the half the
ontours are only drawn where flow is elliptic (i.e. | 	 |>| � |). Plots illustrate increasing poly
i = 10, and ˇ = 0.9.
tonian Floquet analysis with viscoelastic base flows corresponding to L = 10, L = 20,

rates can clearly still be reduced by changing the base flow. For
L = 10, the increase in |� | is somewhat surprising, but is consis-
tent with the fact that the base flow has not changed significantly.
The small changes that do exist are such that production is slightly
increased for this case. For L = 20 and even more so at L = 30, the
base flow becomes so altered that its state is much less susceptible
to three-dimensional disturbances. This is similar to the findings of
Kumar and Homsy [21], who performed a three-dimensional stabil-
ity analysis of a two-dimensional, viscoelastic shear layer which has
already undergone a roll-up instability. After illustrating that vis-
coelasticity actually destabilizes for low elasticity, they proposed
that at higher values of L, viscoelasticity can alter the process of
two-dimensional roll-up to the point that the final state is much
less sensitive to three-dimensional perturbations.

As mentioned at the beginning of this section, the mode A
instability has been associated with an elliptic instability in the
developing primary vortex core, and clearly this process is altered
by the presence of viscoelasticity in the base flow. Therefore, to
determine why viscoelasticity is behaving as a perturbation energy
sink (albeit a weak one), the results of analytical work done by
Lagnado and Simmen [22] and Haj-Hariri and Homsy [23] are
applied to the present case. Lagnado and Simmen [22] conducted

an analytical study on the effects of viscoelasticity on the elliptic
instability of vortices and found a destabilizing influence which
dominates for instability wavevectors nearly perpendicular to the
vortex axis. Independently, Haj-Hariri and Homsy [23] found very

local vorticity and � is the maximum strain rate in linear elliptical flow. Note that
mer extensibility: (a) Newtonian, (b) L = 10, (c) L = 20, and (d) L = 30, where Re = 300,
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ig. 10. Time signals of each of the components of the energy balance over two ba
f the symbols). Energy components scaled by total energy at current time. (a) New
iscoelastic calculations are for Wi = 10 and ˇ = 0.9.

imilar results and elaborated on this new mode of instability which
xists for the vanishing spanwise component of the instability
avevector. Both of these findings, unfortunately, are not directly

pplicable to the present case since we have restricted the pertur-
ation wavevector to lie exactly in the spanwise direction, and thus

t does not have a vanishing spanwise component for finite ˛. As a
esult, comparisons of their findings can only be made at near-zero
alues of the angle � between the rotating wavevector and the axis
f the elliptic vortex, and only [23] provides details of instability
rowth rates at such angles. Comparing the stability diagrams of

23] for both the inviscid (their Figure 1) and viscoelastic (their Fig-
re 3) cases, we see that at low values of � there is indeed a small
ut finite amount of stabilization in the growth rates over all values
f ellipse eccentricity. Because much of the focus of their work was
n the new mode of in-plane instability, no discussion was made

ig. 11. Plots of Floquet multiplier |� | versus time for the (a) full viscoelastic case; (b) New
nd L = 30. Calculations for spanwise wavenumber ˛ = 7.6.
w shedding periods for spanwise wavenumber of ˛ = 7.6 (see text for explanation
n case; (b) L = 10 case; (c) L = 20 case. All three calculations are for Re = 300, and all

of this stabilization at low values of �, but it suffices to say that this
stabilization is clearly consistent with our present results. How-
ever, as argued above, this is only a minor effect since it does not in
any way account for the reduction of perturbation energy produc-
tion – it only uncovers why viscoelasticity can extract perturbation
energy from the system.

What is more important is determining what causes these
altered base flows to be more or less stable to three-dimensional
instabilities. By looking at certain kinematic quantities (vorticity,
strain rate, etc.) inside the primary vortices, one can qualitatively

anticipate the change in stability of various base flows. Although it
was stated above that the findings of [22] and [23] were not directly
applicable to the current study, in each of these investigations the
instability growth rates were found to scale proportionally with
a measure of vortex rotation rate (� =

√
	2 − �2, where 	 is half

tonian Floquet analysis with viscoelastic base flows corresponding to L = 10, L = 20,
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ig. 12. Contour plots of principal strain rate, measured along the principal axes in
llustrate increasing polymer extensibility: (a) Newtonian, (b) L = 10, (c) L = 20, and (

he vorticity and � is the maximum strain rate in a linear elliptical
ow). This scaling of growth rate with elliptic rotation rate is consis-
ent with the Newtonian analyses as well [15–17], and shows that
n overall reduction of vorticity or rotation within the developing
rimary vortex core would correspondingly reduce the growth of
hree-dimensional instabilities. This is indeed the case, as increas-
ng polymer extensibility is observed to significantly reduce the

agnitudes of rotation within the base flow vortex cores, and this
s evident in Fig. 9. As polymer extensibility L is increased, the peak
otation rate within the developing core located on the lower half of
he wake is reduced nearly 60%. This effect, rather than viscoelastic-
ty acting as a perturbation energy sink, is the primary mechanism
eading to a stabilization of the two-dimensional viscoelastic wake.

.2. Mode B stabilization mechanism

To determine how the mode B instability is suppressed, a similar
pproach was taken to that described above. Fig. 10 shows the com-
onents of the energy balance again at Re = 300 and various values
f L, except at a spanwise wavenumber of ˛ = 7.6. At this value of
, the story is quite different. Recall from Fig. 4, the reduction in
rowth rates as L is increased in this range of ˛ is non-monotonic.
xamining Fig. 10, we now find that at L = 10, rather than reducing
he production of perturbation energy, the production is increased
lightly. This, coupled with the presence of the now-positive vis-
oelastic source (cf. Fig. 10), leads to a rise in the instability growth
ate. At L = 20, however, the production is once again inhibited
s it was for lower values of ˛. This effect is in competition
ith a strongly destabilizing contribution from the viscoelastic

ource. At certain times during the shedding period, the viscoelastic
ontribution is nearly equal in magnitude to that of the produc-
ion and cannot be neglected from the budget as with the mode

case. The combination of these competing effects at L = 20 is
n overall decrease in the growth of perturbations – an effect
hich is even stronger at L = 30 (not shown). It thus appears that
hile the energy production is again begin altered and reduced

t high enough L, it is now in competition with a destabilizing

ffect due directly to viscoelasticity acting on the perturbation.
o find the cause of these effects, a Newtonian Floquet analysis
as again done on the base flows associated with various values

f L. The plots of |� | versus time are shown in Fig. 11, comparing
he full viscoelastic case to the Newtonian calculation on the vis-
rbolic. Note that contours are only drawn where flow is elliptic (i.e. | � |>| 	 |). Plots
30, where Re = 300, Wi = 10, and ˇ = 0.9.

coelastic base flows. Not surprisingly, changes in the base flow are
again directly responsible for the reduction in energy production,
seen in the drastic reduction of the values of the Floquet multi-
plier.

Just as the mode A instability has been associated with an ellip-
tic instability scaling with the primary vortex cores, the mode B
instability has been referred to as a “hyperbolic” instability, scaling
on the size of the braid region between vortices (see [3,14]). This
type of instability originates at the stagnation point within the braid
region, surrounded locally by an extensional flow, and is found in
other common flows such as shear flows or mixing layers. Unlike
the elliptic instability, however, relating the analysis of a simple
linear flow field to the full cylinder wake is problematic due to the
finite size of the hyperbolic region. Regardless, the linear stabil-
ity theory of [24] indicates that linear hyperbolic flow (extensional
flow) is unconditionally unstable to perturbations – for any flow
field, there exists a disturbance wavevector which grows in time.
This effect is due to line vortex stretching of the perturbation vortic-
ity near the stagnation point. Furthermore, this instability growth
rate scales proportionally with the local principal strain rate, just as
the elliptic instability growth rate scaled with local rotation rate.
Therefore, in similar fashion to the mode A stabilization mecha-
nism, we find that with increasing polymer extensibility L the strain
rate existing between primary vortices in the base flow weakens (as
did the rotation rate within a developing core), thus stabilizing the
flow. This is seen clearly in Fig. 12.

Unlike the mode A stabilization mechanism, however, is that
the same authors also performed linear stability analysis for a vis-
coelastic extensional flow (see [25]), showing that the same linear
flow regime is destabilized in the presence of an Oldroyd-B fluid.
This destabilization is manifested in an increased range of unstable
spanwise wavenumbers, which is consistent with the destabiliz-
ing presence of the viscoelastic perturbation energy source in the
mode B case (seen in Fig. 10). What emerges for the high ˛ unsta-
ble band is a competition between a base flow-induced stabilization
and a viscoelastic perturbation destabilization. At low values of L,
the base flow is not modified significantly, and therefore viscoelas-

ticity causes an increase in the observed Floquet multipliers. At
higher L, however, the extensional flow within the braid regions of
the base flow is weakened enough to decrease the rate of pertur-
bation energy production in a way that ultimately eliminates the
growth of all disturbances.
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. Conclusions

A Floquet stability analysis has been performed for viscoelastic
ow past a circular cylinder using the FENE-P model. By measuring
loquet multipliers based on computed increases in perturbation
nergy, we were able to determine the effect that viscoelasticity
as on the transitioning cylinder wake. For Newtonian flows, two
nstable wavenumber bands have been observed by [4], which
re associated with the nonlinear mode A and mode B instabilities
ound in the cylinder wake at Re ≈ 190 and Re ≈ 260, respectively.
or the low wavenumber band, viscoelasticity stabilizes the flow
nd monotonically reduces the growth rate of small spanwise
isturbances as the polymer extensibility L is increased. For the
igh wavenumber band, however, stabilization still occurs but is
on-monotonic. For L = 10, the growth rates actually increase signif-

cantly, while for L = 20 and higher, the growth rates are reduced to
he point where instabilities will not grow. The linear results were
hen compared to nonlinear simulations, and general qualitative
greement was found.

To determine what causes this stabilization, the same Floquet
nalysis was done for Newtonian flow, but using the base flows
rom the various viscoelastic cases. By doing this, it was shown
hat the primary mechanism through which viscoelasticity stabi-
izes the flow is through modification of the underlying base state.
hrough reductions in vorticity and strain rate in the primary vor-
ices, viscoelasticity reduces the production of disturbance energy
nd stabilizes the flow for both the mode A and mode B bands
f spanwise wavenumber. For mode A, the effect of viscoelastic-
ty on the perturbation is negligible, while for the higher band of

avenumbers, viscoelasticity has a strong destabilizing effect on
erturbations. In the case of mode B, the competition between
he base state modification and the destabilization of perturba-
ions is then manifested in the non-monotonic reduction of growth
ates.

The implications for this work are quite broad. By showing
irectly that viscoelasticity can achieve wake stabilization, yet
nother potential application for injection of polymer additives is
ound. In situations where transition of flow over a bluff body is
ndesired or its delay is advantageous, polymeric additives may
ave important applications. Furthermore, what we have shown

s that it is merely a change in the base state that is required for
tabilization – a condition which does not directly necessitate the
se of polymer additives. We speculate that if the recirculation
egion behind the cylinder can be extended, in addition to weaken-
ng and stretching the vorticity of the cores themselves, a desired
tabilization can be achieved.
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